“节能减排电石炉尾气发电机组”参数说明
是否有现货: | 是 | 认证: | ISO9001 |
气源: | 煤气 | 额定电压: | 10500kv |
输出电压: | 10500kv | 额定功率: | 600kw |
额定频率: | 50Hz | 发动机型号: | 8300zd |
产品认证: | CCS | 型号: | Gmf600 |
规格: | 600kw | 商标: | 淄柴 |
包装: | 木箱 | 产量: | 99 |
“节能减排电石炉尾气发电机组”详细介绍
密闭电石炉尾气利用新途径
摘要:密闭电石炉尾气具有成分复杂、净化难、热值较高等特点。现有的利用方法存在可选择的成熟技术少、限制条件多等问题。以年产6万吨电石的电石厂为例,进行了技术经济分析,提出了具有分布式能源特征的密闭电石炉尾气利用途径。
关键词:电石炉尾气,利用,电石行业
引言
目前,我国每年产生的电石炉尾气超过150亿m3.处置方式基本为炉气直排或点火炬,不仅浪费了大量能源,也造成环境污染。国家对此十分重视,在《电石行业准入条件(2007年修订)》中明确规定“新建电石生产装置必须采用密闭式电石炉,电石炉气必须综合利用”,“密闭式电石装置的炉气(指CO气体)必须综合利用,正常生产时不允许炉气直排或点火炬”。
但由于电石炉尾气成分复杂,净化提纯难度大,国内外目前可供选用的真正成熟可行且实现了工业化生产的技术工艺很少,因而电石炉尾气回收利用率一直很低。截至2008年底,全国电石炉尾气的利用量尚不足15亿m3,利用率不足10%。每年因此损失约240万吨标准煤,同时排放约1200万吨二氧化碳和90余万吨粉尘。
研究开发经济合理、工艺技术可行的电石炉尾气利用途径,迫在眉睫。
1密闭电石炉尾气的主要成分及特性
密闭电石炉具有焦耗及电耗低、装置易大型化、生产能力大、炉况稳定、产品质量好、炉气可全部回收利用等特点,是国家鼓励发展的炉型。电石炉尾气的成分复杂,含有一氧化碳、氢气、甲烷、乙炔、硫化物、磷化物、氰化物、煤焦油等十几种成分。
由于电石炉尾气含尘量大、温度高、易析出焦油、易燃易爆、成分复杂、气体压力小,因此对其输送、净化或是提纯的难度都很大,回收利用较难。
电石炉尾气的主要成分、参数如表1.
2密闭电石炉尾气利用途径分析
密闭电石炉尾气现有的利用途径可分为两大类:用做燃料或化工原料。
2.1用做尾气锅炉燃料
该技术将密闭电石炉的含尘尾气直接引入特别设计的余热锅炉燃烧,充分利用电石炉尾气的显热、可燃气体(CO+H2,含量80%)的燃烧热和尾气中部分粉尘的燃烧热来生产蒸汽。同时通过锅炉膛、烟道落灰斗重力沉降及特别设计的电除尘器对烟气进行除尘处理,达到电石炉尾气热能利用及干法除尘的双重目的。
该技术巧妙地避开了电石炉尾气难以净化的难题,采取先燃烧后除尘的方案,一台尾气锅炉系统集除尘、供汽、消除有毒有害污染物于一体;电石炉出来的高温炉气经尾气锅炉煅烧后,粉尘中的氰化物含量为
2.2用做电石生产的热源燃料
2.3.1生产甲酸
(2)合成甲醇、二甲醚
3密闭电石炉尾气利用新途径
能源生产和供应形式多样化已经成为必然发展趋势,分布式能源是提高能源有效利用率、保护环境的有效途径,已受到世界各国的高度重视并得到广泛应用。
将净化后的电石炉尾气,作为燃气内燃机发电的燃料,具有典型的分布式能源特征,可大可小,附加值高,技术成熟可靠。
3.1燃气内燃机发电原理
1876年,德国商人兼机械师奥托发明了人类第一台以煤气为燃料的四冲程内燃机,经过10年的不断改进,德国的另一个机械师“奔驰汽车之父”戴姆勒•本茨才将这种四冲程发动机改进为汽油发动机,直到1895年,狄塞尔才发明出柴油机。
燃气内燃机的工作原理基本与汽车发动机无异,由于内燃机气缸内的核心区域工作温度可以达到1400℃,因而其工作效率大超过了蒸汽轮机和燃气轮机。燃气内燃机的发电效率通常在30%~40%之间,比较常见的机型一般可以达到35%。加上余热利用,总的电石炉尾气能量利用率可达80%以上。
3.2燃气内燃机发电工艺流程
燃气内燃机发电系统分为三大部分,电石炉尾气预处理系统、发电系统、外部配套系统。具体包括电石炉尾气净化、冷却水循环、发电和输配电、余热利用装置、厂房土建等。其工艺流程如下图:
3.3燃气内燃机发电投资估算
以某电石厂每年生产6万吨电石为例,每吨电石产气400m3,年产气量2400万m3,小时产气量2740m3.1m3电石炉尾气热值约为2400大卡左右,1m3气能发1度电左右。上述气量用于发电,可装机容量达2740kW,采用6台CEG500-CC电石尾气发电机组,按年发电时间7500小时计算,年发电量可达2055万kW•h以上。机组发出的电压为400V,发电输出从用户的变压器低压端并入内部电网,可减少用户从市网的用电量,发电自动并网。主要投资内容及投资估算如表2所示。
摘要:密闭电石炉尾气具有成分复杂、净化难、热值较高等特点。现有的利用方法存在可选择的成熟技术少、限制条件多等问题。以年产6万吨电石的电石厂为例,进行了技术经济分析,提出了具有分布式能源特征的密闭电石炉尾气利用途径。
关键词:电石炉尾气,利用,电石行业
引言
目前,我国每年产生的电石炉尾气超过150亿m3.处置方式基本为炉气直排或点火炬,不仅浪费了大量能源,也造成环境污染。国家对此十分重视,在《电石行业准入条件(2007年修订)》中明确规定“新建电石生产装置必须采用密闭式电石炉,电石炉气必须综合利用”,“密闭式电石装置的炉气(指CO气体)必须综合利用,正常生产时不允许炉气直排或点火炬”。
但由于电石炉尾气成分复杂,净化提纯难度大,国内外目前可供选用的真正成熟可行且实现了工业化生产的技术工艺很少,因而电石炉尾气回收利用率一直很低。截至2008年底,全国电石炉尾气的利用量尚不足15亿m3,利用率不足10%。每年因此损失约240万吨标准煤,同时排放约1200万吨二氧化碳和90余万吨粉尘。
研究开发经济合理、工艺技术可行的电石炉尾气利用途径,迫在眉睫。
1密闭电石炉尾气的主要成分及特性
密闭电石炉具有焦耗及电耗低、装置易大型化、生产能力大、炉况稳定、产品质量好、炉气可全部回收利用等特点,是国家鼓励发展的炉型。电石炉尾气的成分复杂,含有一氧化碳、氢气、甲烷、乙炔、硫化物、磷化物、氰化物、煤焦油等十几种成分。
由于电石炉尾气含尘量大、温度高、易析出焦油、易燃易爆、成分复杂、气体压力小,因此对其输送、净化或是提纯的难度都很大,回收利用较难。
电石炉尾气的主要成分、参数如表1.
2密闭电石炉尾气利用途径分析
密闭电石炉尾气现有的利用途径可分为两大类:用做燃料或化工原料。
2.1用做尾气锅炉燃料
该技术将密闭电石炉的含尘尾气直接引入特别设计的余热锅炉燃烧,充分利用电石炉尾气的显热、可燃气体(CO+H2,含量80%)的燃烧热和尾气中部分粉尘的燃烧热来生产蒸汽。同时通过锅炉膛、烟道落灰斗重力沉降及特别设计的电除尘器对烟气进行除尘处理,达到电石炉尾气热能利用及干法除尘的双重目的。
该技术巧妙地避开了电石炉尾气难以净化的难题,采取先燃烧后除尘的方案,一台尾气锅炉系统集除尘、供汽、消除有毒有害污染物于一体;电石炉出来的高温炉气经尾气锅炉煅烧后,粉尘中的氰化物含量为
2.2用做电石生产的热源燃料
2.3.1生产甲酸
(2)合成甲醇、二甲醚
3密闭电石炉尾气利用新途径
能源生产和供应形式多样化已经成为必然发展趋势,分布式能源是提高能源有效利用率、保护环境的有效途径,已受到世界各国的高度重视并得到广泛应用。
将净化后的电石炉尾气,作为燃气内燃机发电的燃料,具有典型的分布式能源特征,可大可小,附加值高,技术成熟可靠。
3.1燃气内燃机发电原理
1876年,德国商人兼机械师奥托发明了人类第一台以煤气为燃料的四冲程内燃机,经过10年的不断改进,德国的另一个机械师“奔驰汽车之父”戴姆勒•本茨才将这种四冲程发动机改进为汽油发动机,直到1895年,狄塞尔才发明出柴油机。
燃气内燃机的工作原理基本与汽车发动机无异,由于内燃机气缸内的核心区域工作温度可以达到1400℃,因而其工作效率大超过了蒸汽轮机和燃气轮机。燃气内燃机的发电效率通常在30%~40%之间,比较常见的机型一般可以达到35%。加上余热利用,总的电石炉尾气能量利用率可达80%以上。
3.2燃气内燃机发电工艺流程
燃气内燃机发电系统分为三大部分,电石炉尾气预处理系统、发电系统、外部配套系统。具体包括电石炉尾气净化、冷却水循环、发电和输配电、余热利用装置、厂房土建等。其工艺流程如下图:
3.3燃气内燃机发电投资估算
以某电石厂每年生产6万吨电石为例,每吨电石产气400m3,年产气量2400万m3,小时产气量2740m3.1m3电石炉尾气热值约为2400大卡左右,1m3气能发1度电左右。上述气量用于发电,可装机容量达2740kW,采用6台CEG500-CC电石尾气发电机组,按年发电时间7500小时计算,年发电量可达2055万kW•h以上。机组发出的电压为400V,发电输出从用户的变压器低压端并入内部电网,可减少用户从市网的用电量,发电自动并网。主要投资内容及投资估算如表2所示。